Thursday, June 14, 2012

GRAVITY (by Allan Poe Bona Redoña)

    Sir Isaac Newton, an ardent bible student & physicist, was actually not the first to teach about gravitation. in fact his intuition about a falling apple (and because of being well-versed biblical researcher) brought the gravitation to the full acknowledgement.
    In 1611, a version of the Bible was translated in English  which rendered :

    "  He stretcheth   out    the   north   over  the  
           empty    place,      and   


       hangeth     the   earth   upon   nothing  "

                                                           -    Job   26:7

     In what   is the   earth   hanged   upon   nothing ?

"  It   is   he   that sitteth   upon   the  circle   of the   earth, ... "     -   Isaiah  40:22  (KJV)

      The   Earth   has   " circle " ,   which   Newton   called   "  orb ".

    What   causes   the earth   to remain   in that   orbit   while   it is   hanged  there ?   What  holds   it so that  it   is hanged  upon  nothing ?

    "  Behold, the  Lord   GOD   comes  with   might,  and  his arm   rules   for  him; ... Who has   measured  the   water  in the hollow  of his   hand  and marked   off the heavens   with   a span, enclosed   the dust of the earth    in   a   measure     and      weighed    the   mountains   in scales   and   the   hills   in   a balance  ?"
           -    Isaiah 40:10, 12  (RSV)

     The biblical teaching   is that  the earth  in its  circle   is weighing-ly  hanged   upon   nothing.

                           What    is      weight   ?
      Weight   is  the force  with  which  gravity   acts   on a  mass.   It is   the gravitational force   from  an  attracting  mass   to the   weighed  object:  It is  considered   to be   the weight  of the  falling   object.  And since  gravity  means  heaviness during  those days,  this  weighing heaviness   was  since then  called   gravity.

        Force             =            mass           x           acceleration

    Newton suggested that the rate of fall (i.e. acceleration) was proportional to the strength of the gravitational force.

        Force            =             mass           x          acceleration

        Weight           =             mass          x           acceleration  due to gravity

      Using  the modern terminology, the biblical  teaching is that  the earth  is  'gravitationally'   hanged  upon  nothing  in  its  'orbit'.

     " I deduced, "  Isaac Newton wrote  in 1664,   "that the forces  which  keep  the planets  in their  orbs  must  be reciprocally  as the  squares  of their  distances  from  the centers  about  which  they  revolve. "

      The Latin-derived  word     orb   is   khuwg   in the Hebrew  Bible  which means  circle, course  or circuit.
      Moon  orbits  on earth, and Newton  thought  if whether  the force  which  pulled  an apple  downward to the earth  and the  force  that attracts  the Moon  to remain in orbit were one & the same or not.  The  'acceleration'  because  of the gravitation  is considered  to be  the gravitational force field strength  of an  attracting  mass (heavier one). By deduction he arrived  to a suggestion  that the  force which  keeps a planet  in its  orbit  is reciprocally as the square of its distance from  the center of the  Sun  and  center  of the earth.

          Force           =                       I    /      d²


          Force           ╫                    (mass)     x          (Mass)     /       (distance)²

    mass  x  acceleration    ╫       (mass of earth)  x  (Mass of  Sun)  /  (center to center)²


    His gravitational    'inverse square'   law   needs   a  proportionality   constant.   This   constant, signified  by  letter   G,   must  balance  the equation. (What balances  the equation?  It should  cancel  the   , m,  and  M ,  and  it should equate   to  ' mass x acceleration'.)


mass x acceleration  =  [ (mass x acceleration) d²    m -  1        M -  1 ] (m) (M)   /  d²          

  m   x    a           =       [  (   m     x     a   )    d²    m -  1     M -  1     ]  (m)  (M)  /  d²            


     m      a            =       [                       G                              ]  (m)  (M)  /  d²               





 Force                =        [                         G                                    ]     m   M   /  d²                 

     F                   =                                         G                m        M         /      d²                      





                                      F       =         G       m    M     /  d²                                         




         With  this   formula   we can   now   know   the gravitational  force   between   two  mutually   attracting   objects.   The    biblical   term   for this  force   is   ' weight '.


          G      or    gravitational constant   balances   the equation   and  is  equal  to   (mass x  acceleration) x square  distance x  per kilogram of lighter mass per kilogram of heavier  Mass  (or   ma   d²  m -  1 M -  1  ) .

      In ancient time, the  easiest way  to  measure an object's weight  is by the balance (scale).



       Objects on the both  sides  of the balance exert  pulling  force. thinking  the planet Earth  and the star  Sun   as such those  objects we can have an idea  that they  are both  exerting  pulling  force.
       Such  a pulling  force  is the  reason   why  apples   from   a  tree  fall on  the ground:   the earth's  gravitational  force  pulls  the apple, since  Earth  is heavier  than  apple.


      At the  present distance, the gravitational force  of the  sun  is  not completely  pulling  or losing  the earth.
       John  Michell  (1724-1793)   of  Nottinghamshire, England, invented  a  torsion  balance to determine   the   G,   gravitational  constant,  in  Newton's   formula, but unluckily  he died  before  he   found  it.


                                               G                =           F          d²    /     m      M                  

                           G           m       M            =           F          d²



                           (       G     m     M     /       d²       )           =             F                      




         His contemporary   Henry   Cavendish  in 1798  tried it  by measuring   the  force  caused   by   large  balls (M)  to,   and which  were  drown  near  to,  two   light  lead  balls (m)   at  each  end  of  a rod, which  was  hanged  by  a  twistable   wire.   Having   known  the attracting  force, distance  between  centers  of the  heavy  &  light  balls   and their  masses, he could  now solve  the  strength of the constant   G.   (the  modern  value  for this   G    is  6.674 28 x 10 -  11      N  m 2        kg - 2 .    
    With   this   gravitational  constant, it is now  possible  to calculate  the mass ( M )   of the  planet  Earth   by the  mass ( m )   of a  falling   object  &  its  rate  of  fall   and their  distance   ( d )  center to center   through  the  equation

                            M             =             F      d²   /       G     m                                          


where     F    is the  weight    or gravitational  force.

         Since   object   here   on  Earth   is  too near, we  will use  instead  the Earth's  radius  ( r ), the   downward  acceleration (g)   of  &   the mass  (1m)   of the falling   object  with  the equation

                          M               =               g        r²         1m    /        G     1m                  



                          M               =                          g        r ²        /       G                         


so that  it is  now  easier   to calculate   the  mass  ( M )   of  a  planet   or  any   heavier   object, simply   by  its    radius   ( r ),  and    acceleration   due  to  gravity.     


     To  know    the value   of    g    (acceleration  due to gravity)     of  a  planet  ,   the formula   is   

                             g               =        4     π  ²       l      /       T ²


where     l      is the  length   of   a  pendulum, and     T   is   the  period (in second)  of  swing  of the   pendulum.

     Discovery   of    Gravity     :            by   Allan Poe Bona Redoña 

No comments:

Post a Comment